TRANSPORTING

TD75 Belt Conveyor

Principle

Belt conveyor is mainly composed of two end rollers and the closed belt which tightly set on it. The one driving the conveyor belt is named as the driving roller; the other one only used for changing the motion direction of the conveyor belt is named as the bend roller. The driving roller is drived by the motor through the reducer while the conveyor belt is dragged by the friction between the driving roller and the conveyor belt. The driving roller is generally installed on the discharging side to increase the traction and convenience to drug. Materials are fed by the feeding end, dropped on the conveyor belt, and discharged by the discharging end which is driven by the conveyor belt friction.

TD75 belt conveyor is a general series product of belt conveyor.

Application

Widely used in the fields of chemical, coal, metallurgy, mine, power, light, food, transportation, etc. Applied to convey bulk materials with loose density of 0.5-2.5 t/m² and unit goods.

Technical Features

The unit weight of materials conveyed by the TD75 belt conveyor should be less than 2.5 t/m³.

This series is divided into six specifications including 500 mm, 650 mm, 800 mm, 1000 mm, 1200 mm, and 1400 mm by the bandwidth.

Divided into 1.5 kW, 2.2 kW, 3 kW, 4 kW, 5.5 kW, 7.5 kW, 11 kW, 15 kW, 18.5 kW, 22 kW, 30 kW, 40 kW, etc. by the driving power.

Divided into 0.8m/s, 1.0 m/s, 1.25 m/s, 1.6 m/s, 2.0 m/s, 2.5 m/s, 3.15 m/s, 4 m/s, etc., by the belt speed.

Refer to the following table for the max. conveying capacity of this series.

Technical Parameters

		Belt Width B (mm)					
Carrying Idler Type	Belt Speed (m/s)	500	650	800	1000	1200	1400
XO		Conveying Capacity Q (t/h)					
	0.8	78	131	_	_	_	_
Trough Idler	1.00	97	164	278	435	655	891
	1.25	122	206	348	544	819	1115
	1.6	156	264	445	696	1048	1427
	2.0	191	323	546	853	1284	1748
	2.5	232	391	661	1033	1556	2118
	3.15			824	1233	1858	2528
	4.0					2202	2995

The conveying capacity in the table is calculated under the condition of $\gamma=1$ t/m³ for the material density, 0°-7° for the conveyor inclination angle, and 30° for the material accumulation angle.